Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity.
نویسندگان
چکیده
Graphitic carbon nitride (g-C3N4) is a visible light photocatalyst, limited by low activity mainly caused by rapid recombination of charge carriers. In the present work, honeycomb-like g-C3N4 was synthesized via thermal condensation of urea with addition of water at 450 °C for 1 h. Prolonging the condensation time caused the morphology of g-C3N4 to change from a porous honeycomb structure to a velvet-like nanoarchitecture. Unlike in previous studies, the photocatalytic activity of g-C3N4 decreased with increasing surface area. The honeycomb-like g-C3N4 with a relatively low surface area showed highly enhanced photocatalytic activity with an NO removal ratio of 48%. The evolution of NO2 intermediate was dramatically inhibited over the honeycomb-like g-C3N4. The short and long lifetimes of the charge carriers for honeycomb-like g-C3N4 were unprecedentedly prolonged to 22.3 and 165.4 ns, respectively. As a result, the honeycomb-like g-C3N4 was highly efficient and stable in activity and could be used repeatedly. Addition of water had the following multiple positive effects on g-C3N4: (1) formation of the honeycomb structure, (2) promotion of charge separation and migration, (3) enlargement of the band gap, (4) increase in production yield, and (5) decrease in energy cost. These advantages make the present preparation method for highly efficient g-C3N4 extremely appealing for large-scale applications. The active species produced from g-C3N4 under illumination were confirmed using DMPO-ESR spin-trapping, the reaction intermediate was monitored, and the reaction mechanism of photocatalytic NO oxidation by g-C3N4 was revealed. This work could provide an attractive alternative method for mass-production of highly active g-C3N4-based photocatalysts for environmental and energetic applications.
منابع مشابه
Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation.
Hydrophilic treatment of bulk graphene-like carbon nitride (g-C3N4) for future applications has aroused extensive interest, due to its enhanced specific surface area and unusual electronic properties. Herein, water-dispersible g-C3N4 with a porous structure can be obtained by chemical oxidation of bulk g-C3N4 with K2Cr2O7-H2SO4. Acid oxidation results in the production of hydroxyl and carboxyl ...
متن کاملSynthesis of novel and stable g-C3N4/N-doped SrTiO3 hybrid nanocomposites with improved photocurrent and photocatalytic activity under visible light irradiation.
Hybrid nanocomposites based on N-doped SrTiO3 nanoparticles wrapped in g-C3N4 nanosheets were successfully prepared by a facile and reproducible polymeric citrate and thermal exfoliation method. The results clearly indicated that the N-doped SrTiO3 nanoparticles are successfully wrapped in layers of the g-C3N4 nanosheets. The g-C3N4/N-doped SrTiO3 nanocomposites showed absorption edges at longe...
متن کاملRoom-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability
A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-of...
متن کاملCodeposition of Fe3O4 Nanoparticles Sandwiched Between g-C3N4 and TiO2 Nanosheets: Structure, Characterization and High Photocatalytic Activity for Efficiently Degradation of Dye Pollutants
Novel ternary nanocomposite photocatalysts based on g-C3N4/Fe3O4/TiO2 nanosheet were synthesized using simple solid combustion, hydrothermal and wetness impregnation methods. The g-C3N4 nanosheet (2D)/ Fe3O4/ TiO2 nanosheet (2D) triad-interface nanocomposite arranged in the form of Fe3O4 nanoparticle was sandwiched and well dispersed on the surface between g-C3N4 and TiO2 nanosheets. The synthe...
متن کاملAg2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition.
Without Pt as cocatalyst, the photocatalytic hydrogen evolution activity of graphitic carbon nitride (g-C3N4) or even its composite is normally rather low (<1 μmol h(-1)). Exploring Pt-free cocatalysts to substitute precious Pt is of great importance in the photocatalytic field. In the present work, Ag2S-modified g-C3N4 (Ag2S/g-C3N4) composite photocatalysts were prepared via a simple precipita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2015